US009218201B2

a2z United States Patent (10) Patent No.: US 9,218,201 B2
Yamashita et al. (45) Date of Patent: Dec. 22, 2015
(54) MULTICORE SYSTEM AND ACTIVATING 6,981,258 Bl 12/2005 Takakura
METHOD 7,810,094 B1* 10/2010 McClure et al. .............. 718/102
2004/0123201 Al 6/2004 Nguyen et al.
. Lo 2010/0049960 Al 2/2010 Okamoto et al.
(71)  Applicant: EUJITSU {}E;/HTED, Kawasaki-shi, 2010/0223618 ALl™  9/2010 Fuetal. oo, 718/102
anagawa
FOREIGN PATENT DOCUMENTS
(72) Inventors: Koichiro Yamashita, Hachioji (JP);
Hiromasa Yamauchi, Kawasaki (JP) Jp 62-92045 4/1987
Jp 4-60843 2/1992
(73) Assignee: FUJITSU LIMITED, Kawasaki (JP) P 7-253960 10/1995
Jp 11-265297 9/1999
(*) Notice: Subject to any disclaimer, the term of this g ggg?ﬁgggg 13;%88(1)
patent is extended or adjusted under 35 TP 2006-252437 9/2006
U.S.C. 154(b) by 477 days. (Continued)
(21) Appl. No.: 13/622,536
OTHER PUBLICATIONS
(22) Filed: Sep. 19, 2012 ) )
Extended European Search Report issued Sep. 6,2013 in correspond-
(65) Prior Publication Data ing European Application No. 10848380.1.
US 2013/0024870 A1 Jan. 24, 2013 (Continued)
Related U.S. Application Data
Pri Examiner — T L,
(63) Continuation of application No. PCT/JP2010/055138, rimary Bxaminer T Jammy e
filed on Mar. 24, 2010. Assistant Examiner — Michael Ayers
(74) Attorney, Agent, or Firm — Staas & Halsey LLP
(51) Imt.ClL
GO6F 9/50 (2006.01)
GOGF 9/46 (2006.01) G7) ABSTRACT
GO6F 9/48 (2006.01) . . . )
GOGF 9/52 (2006.01) A multicore system includes multiple processor cores; a
(52) US.Cl scheduler in each of the processor cores and allocating a
i ) process to the processor cores when having a master authority
CPC e G06F2%;’§%11 (22103 6;)713} 53031(;'1%/{)015 that is an authority to assign processes; and a master control-
. . . ( 01); ( 01) ler performing control to repeat until a process to be executed
(58)  Field of Classification Search no longer exists, a cycle in which the schedulers transfer the
None L . master authority to another processor core after receiving the
See application file for complete search history. master authority and before assigning a process to the pro-
. cessor cores, discards the master authority after assigning the
(56) References Cited process to the processor cores, and enters a state of waiting to
U.S. PATENT DOCUMENTS receive the master authority.
4,630,193 A * 12/1986 KIiS ..ccooeovvvvvinicieiinne 713/502
5,687,073 A 11/1997 Kishimoto 14 Claims, 8 Drawing Sheets
(9
MASTER CONTROLLER
TRANSFEROF | [ iy N
MASTER
AUTHORITY Dl N
$° ¢ ¢ 1 ¢®
SCHEDULER P SCHEDULER SCHEDULER R SCHEDULER S
¢! @ ¢ ¢
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
CORE P COREQ CORER CORE S




US 9,218,201 B2
Page 2

(56) References Cited

FOREIGN PATENT DOCUMENTS

JP 2008-186175 8/2008

JP 2009-75910 4/2009

JP 2009-98769 5/2009
OTHER PUBLICATIONS

Japanese Office Action mailed May 21, 2013 in corresponding Japa-
nese Application No. 2012-506709.

International Preliminary Report on Patentability issued Oct. 4, 2012
(English Translation mailed Oct. 26, 2012) in corresponding Inter-
national Patent Application No. PCT/JP2010/055138.

Chinese Office Action issued Oct. 8, 2014 in corresponding Chinese
Patent Application No. 201080065635.X.

International Search Report of Corresponding PCT Application PCT/
JP2010/055138 mailed Jun. 15, 2010.

* cited by examiner



US 9,218,201 B2

Sheet 1 of 8

Dec. 22, 2015

U.S. Patent

ALIHOHLNY
H3ILSVIN

Y 40 H34SNvdlL

S 3409 ¥ 390D D 340D d 3400
¥OSSIO0Nd ¥OSSIO0Hd ¥0SSID0Nd HOSS3O0¥d
0

S ¥31NA3HOS ¥ ¥31NA3HOS MTINAIHOS d ¥31NA3HOS

8 e > 1) o’ &> |

< > )

Y3 TIOHLNOD HALSYI
5



U.S. Patent Dec. 22, 2015 Sheet 2 of 8 US 9,218,201 B2

\ 4
RECEIVE MASTER AUTHORITY FS1
TRANSMIT NOTIFICATION OF MASTER AUTHORITY 32
TRANSFER

ASSIGN PROCESS I»SS
DISCARD MASTER AUTHORITY I»S4
AWAIT RECEIPT OF MASTER AUTHORITY IwSS




US 9,218,201 B2

Sheet 3 of 8

Dec. 22, 2015

U.S. Patent

>

\l\.\l\l.“ }
JOVINI JOVNI _L.
¥Z ] 1009 T3aNy3Y SO NOILONN4 IAVIS
l‘l\l‘.\l\l\l‘\.\l\l!ll
JOVINI SSID0Hd JOVAI 2
ez ><_l ONIZITYILINI YILSVIN OOAD 9, 5h)
‘ — |
COTHOLS S 30IA3C 30IA3d
/L - = =
A J L 4 L 4 L
6l g 4L J L 4L
S 340D NN ot O 3”OD d 3H0D
¥0SSID0Md ¥0SS3D0Yd ¥OSSID0Nd ¥0SSIDONd
pL° gL’ L’ LL°
e — 1INA T3NY3Y SO
26 HITIOHINOD IAVIS
L HITIOYLINOD HILSYI
£c

=,




U.S. Patent Dec. 22, 2015 Sheet 4 of 8 US 9,218,201 B2

FIG.4

POWER ON IwS11

ACTIVATE KERNEL CORE I\/S12

A
>

Y

RECEIVE MASTER AUTHORITY I» S13
TRANSFER MASTER AUTHORITY I\/ S14
COLLECT LOAD INFORMATION I\/S15
SCHEDULING I\/S16

REQUEST ACTIVATION OF THREAD I\— S17
DISCARD MASTER AUTHORITY I\/ S18
AWAIT RECEIPT OF MASTER AUTHORITY IVS19




U.S. Patent Dec. 22, 2015 Sheet 5 of 8 US 9,218,201 B2

FIG.5

POWER ON Iv S11

ACTIVATE KERNEL CORE Iw S12

»
>
A

y

AWAIT RECEIPT OF MASTER AUTHORITY I\/SZ'l
RECEIVE MASTER AUTHORITY I\/ S22
TRANSFER MASTER AUTHORITY I\a S23
COLLECT LOAD INFORMATION F824
SCHEDULING F825

REQUEST ACTIVATION OF THREAD |\/ S26
DISCARD MASTER AUTHORITY I\1327




U.S. Patent Dec. 22, 2015 Sheet 6 of 8 US 9,218,201 B2

FIG.6

S31

|

RECEIVE THREAD ACTIVATION
REQUEST

ACTIVATE THREAD



US 9,218,201 B2

Sheet 7 of 8

Dec. 22, 2015

U.S. Patent

QvayHL 1SV | u
S I RS Eee -
N Moo - ALMOHLNY HILSYI
.............. N e 40 YIJISNVNL
- » 5SS
-
Q2
p 288
a3 058 YI LSV 40 1T 144 €68
16S » HI4SNYHL I e
| [ Frmmrmrmrcerece e e == - — -!I%Ocrl\l/ lllllllllllllllllllllllllllllllllllllll IIIIV.I
P Dbttt e J 6vS q
h ALIMOHLNY ¥3LSVIN e o
40 ¥34SNvHL ) | ALRIOHINY SFiSVIA s " Y Move
8rs 40 YIISNVHL I e tat et SUPRPUI NS o
9pS ALIMOHLNY Y3LSYIN
¢S " ops . 40 ¥I4SNVL L
< P <_&¥S £rsS
D e vttt Tt ———b - L > el T TP,
NOILONYLSNI w NOILONS1SNI NOLLONULoN] w
1009 1008 1008 Trs
. Zrs \ AL \ Zrs \
avadHL avadHL QvIyHL \ avadHL
TANYHIM TINAIM TIANYEIA 1OHINOD AAVIS TANHIMA
S IHOD YOSSIOOHUd ¥ IO YOSSIO0Nd O IHOD YOSSIO0Hd d 340D H0S$SIO0Ud
Sm Qw Nw_u_ Nv :w



US 9,218,201 B2

Sheet 8 of 8

Dec. 22, 2015

U.S. Patent

A

A

A

" evs

f ers
av3dHl

TANA3IA

S FHOD HOSS3O00Hd

143

S

NOILONAHLSNI
1004

A

av3gHi

BELNEM

Y FHOD HOSSID0YU

€l

5

NOILONYLSNI
1004

dv3dHl

A

I3NEIA

D FH0OD "HOSS3O00¥d

8'9OId

A%

S

NOILONYLSNI w

crs
N

1009

avadHL

TANHIA

d 3402 HOSS3D0Ud

Ll

S



US 9,218,201 B2

1
MULTICORE SYSTEM AND ACTIVATING
METHOD

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation application of Interna-
tional Application PCT/JP2010/055138, filed on Mar. 24,
2010 and designating the U.S., the entire contents of which
are incorporated herein by reference.

FIELD

The embodiments discussed herein are related to a multi-
core system and an activating method.

BACKGROUND

With regard to an information processing apparatus such as
a computer and a portable terminal or an image or audio
processing apparatus such as a digital camera and a television
system, it is conventionally desired to complete the startup of
the apparatus as rapidly as possible after a user turns on the
apparatus. One mode that rapidly starts up an apparatus is a
hibernate boot mode. The hibernate boot mode is a technique
of restoring the previous operating state retained in memory
etc., for rapid startup without executing a normal activation
sequence. A user interface (UI) preceding activation mode
also exists. The Ul preceding activation mode is a technique
of displaying a dummy screen to a user at an earlier stage of
the activation of the apparatus so that the apparatus seems to
be rapidly activated.

On the other hand, a multiprocessor system having mul-
tiple processors and a multicore system having multiple pro-
cessor cores (hereinafter collectively referred to as a multi-
core system) exist. The multicore system has a scheduling
mode in which multiple processes are respectively allocated
to multiple schedulers in advance to sequentially execute the
processes at the selected schedulers according to the alloca-
tion. The multiprocessor system has a mode in which multiple
schedulers having different algorithms is prepared to perform
scheduling with a scheduler having an appropriate algorithm
for each task. The multiprocessor system also has a mode in
which a processor having a master scheduler and a processor
having a slave scheduler are included such that the master
scheduler controls the execution of a process by the slave
scheduler.

For examples of the technology above, refer to Japanese
Laid-Open Patent Publication Nos. 2001-117786, H4-60843,
and H11-265297.

However, the hibernate boot mode has a problem in that a
storage area is necessary for storing the operating state of an
apparatus. In the Ul preceding activation mode, the activation
of the apparatus is not actually rapidly completed. If pro-
cesses are preliminarily allocated to respective schedulers,
the processes cannot be flexibly allocated to the schedulers.
Therefore, this is not suitable for a system, such as a mobile
telephone, that allows a user to update the system and to add
a new function while in use, for example. If multiple sched-
ulers operate, it is problematic that the schedulers must be
synchronized so as not to create a conflict of established
memory or interrupt numbers. If multiple schedulers having
different algorithms are operated and compete based on speed
of'scheduling, a processor that is operated by a scheduler that
is not employed ends up performing unnecessary computa-
tion. This is problematic in terms of power consumption.
Even when multiple schedulers having different algorithms

10

15

25

35

40

45

50

2

are prepared, ifload is concentrated on a scheduler having any
algorithm, a process is delayed in the processor operating the
scheduler.

SUMMARY

According to an aspect of an embodiment, a multicore
system includes multiple processor cores; a scheduler in each
of'the processor cores and allocating a process to the proces-
sor cores when having a master authority that is an authority
to assign processes; and a master controller performing con-
trol to repeat until a process to be executed no longer exists, a
cycle in which the schedulers transfer the master authority to
another processor core after receiving the master authority
and before assigning a process to the processor cores, dis-
cards the master authority after assigning the process to the
processor cores, and enters a state of waiting to receive the
master authority.

The object and advantages of the invention will be realized
and attained by means of the elements and combinations
particularly pointed out in the claims.

It is to be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a block diagram of a multicore system according
to a first embodiment;

FIG. 2 is a flowchart of an activating method according to
the first embodiment;

FIG. 3 is a block diagram of a multicore system according
to a second embodiment;

FIG. 4 is a flowchart of the operation of a processor core
that receives a master authority first in the activating method
according to the second embodiment;

FIG. 5 is a flowchart of the operation of a processor core
that does not receive the master authority first in the activating
method according to the second embodiment;

FIG. 6 is a diagram of state transition in a slave control state
in the activating method according to the second embodi-
ment;

FIG. 7 is adiagram of the operation of the multicore system
in the activating method according to the second embodi-
ment; and

FIG. 8 depicts operation of the multicore system by an
activating method that is a comparison example.

DESCRIPTION OF EMBODIMENTS

Embodiments of a multicore system and an activating
method according to the present invention will now be
described with reference to the drawings. These embodi-
ments do not limit the present invention.

In the first embodiment, after a scheduler operating in a
processor core transfers master authority to a scheduler of
another processor core, processes are assigned to the proces-
sor cores. As a result, multiple processor cores concurrently
execute respectively assigned processes in parallel while tim-
ing is shifted bit by bit.

FIG. 1 is a block diagram of a multicore system according
to the first embodiment. As depicted in FIG. 1, the multicore
system has multiple processor cores, e.g., in the depicted
example, four, processor cores 1, 2, 3, and 4. Nonetheless, the
number is not particularly limited. Schedulers 5, 6, 7, and 8
operate in the processor cores 1, 2, 3, and 4, respectively. Each
of the schedulers 5, 6, 7, and 8 performs scheduling when



US 9,218,201 B2

3

having the master authority. As a result of the scheduling,
processes are assigned to the processor cores 1, 2, 3, and 4.
The master authority is an authority to perform the schedul-
ing. The multicore system has a master controller 9 control-
ling the transfer of the master authority among the schedulers
5,6,7,and 8.

After receiving the master authority and before performing
the scheduling, the schedulers 5, 6, 7, and 8 transfer the
authority to another processor core 1, 2, 3, or 4. After per-
forming the scheduling, the schedulers 5, 6, 7, and 8 discard
the master authority and enter a state of waiting to again
receive the master authority. The master controller 9 provides
control such that each of the schedulers 5, 6, 7, and 8 repeats
such a cycle until processes to be executed no longer exist.
The schedulers 5, 6, 7, and 8 and the master controller 9 are
implemented by the processor cores 1, 2, 3, and 4 executing
software such as a kernel portion of an operating system (OS),
for example.

FIG. 2 is a flowchart of an activating method according to
the first embodiment. The flowchart depicted in FIG. 2
depicts operation of a scheduler among the schedulers. In this
flowchart, the operation of a scheduler P5 of the configuration
depicted in FIG. 1 will be described. The other schedulers Q6,
R7, and S8 depicted in FIG. 1 operate in the same way.

As depicted in FIG. 2, when an apparatus having the mul-
ticore system described above is powered on (cold-booted,
cold-started) or reset (cold-rebooted, cold-restarted), the
scheduler P5 receives the master authority (step S1). The
scheduler P5 transmits, to any one of the other processor
cores Q2, R3, and S4, notification that the master authority is
transferred to the scheduler operating in the corresponding
processor core (step S2). Upon completing the transmission,
the scheduler P5 performs the scheduling to assign a process
to the other processor cores Q2, R3, and S4 (step S3). Upon
completing the scheduling, the scheduler P5 discards the
master authority (step S4) and enters the state of waiting to
again receive the master authority (step S5). Since the sched-
ulers Q6, R7, and S8, which do not initially receive the master
authority, are in the state of waiting until receiving the master
authority, the schedulers Q6, R7, and S8 are started from step
S5. The schedulers P5, Q6, R7, and S8 repeat steps S1 to S5
until processes to be executed no longer exist.

According to the first embodiment, since each of the sched-
ulers performs the scheduling after transferring the master
authority to another scheduler, a portion of a process assigned
to each processor core is executed in parallel with a portion of
another process assigned to another processor core. There-
fore, as compared to the case of not executing portions of
processes assigned to the processor cores in parallel, an appa-
ratus having the multicore system can rapidly be activated.
Since a scheduler operating in each of the processor cores
receives the transfer of the master authority from another
scheduler to perform the scheduling, multiple the schedulers
perform the scheduling in parallel. Therefore, as compared to
a case where only one scheduler acting as a master performs
the scheduling for all of the processor cores, an apparatus
having the multicore system can rapidly be activated.

In a second embodiment, the multicore system of the first
embodiment is used as an embedded system of a portable
terminal such as a mobile telephone terminal or an electric
home appliance such as a television system, for example.

FIG. 3 is a block diagram of a multicore system according
to the second embodiment. As depicted in FIG. 3, the multi-
core system includes processor cores 11, 12, 13, and 14,
devices 15 and 16 executing various processes such as an
image process, an audio process and a communication pro-
cess, and storage 17 such as a hard disk and main memory 18

20

30

35

40

45

55

4

used as a work area. The processor cores 11, 12, 13, and 14,
the devices 15 and 16, the storage 17, and the main memory
18 are connected respectively through a bus 19. Although an
operating system separately operates in the processor cores
11, 12, 13, and 14, one system is constructed as a whole. The
number of the processor cores and the number of the devices
are not limited to the depicted example. For example, the
number of the processor cores may be two, three, or five or
more.

The storage 17 stores a cyclic master image 21, a slave
function image 22, an initializing process image 23, and an
OS kernel boot image 24. The cyclic master image 21 is data
of'a program controlling the circulation of the master author-
ity among the schedulers. The slave function image 22 is data
of a program controlling the receipt and activation of pro-
cesses assigned by the schedulers in the processor cores. The
initializing process image 23 is data of a program initializing
various devices. The OS kernel boot image 24 is data of a
program reading and operating the kernel of the operating
system.

The cyclic master image 21, the slave function image 22,
the initializing process image 23, and the OS kernel boot
image 24 are read from the storage 17 and loaded on the main
memory 18 consequent to the execution of aboot program. As
a result, a master controller 31, a slave controller 32, an
initializing thread 33 as an initializing process, and an OS
kernel unit 34 are implemented on the main memory 18.

The OS kernel unit 34 is a portion implemented with a
basic function of the operating system, e.g., a function such as
activation of a process and a thread. The OS kernel unit 34
includes non-depicted schedulers operating for respective
processor cores. The master controller 31 is a program con-
trolling the circulation of the master authority among the
schedulers. For example, a master flag described in a multi-
core operating system may be used as an example of the
master authority. In this case, the master controller 31 con-
trols this master flag. The initializing thread 33 is a program
that initializes various devices. The slave controller 32 is a
program residing on all the processor cores to control the
receipt and activation of the processes assigned by the sched-
ulers.

FIG. 4 is a flowchart of the operation of a processor core
that receives the master authority first in the activating
method according to the second embodiment. In this descrip-
tion, a kernel operating in a processor core P11 of the con-
figuration depicted in FIG. 3 is assumed to receive the master
authority first.

As depicted in FIG. 4, when an apparatus having the mul-
ticore system depicted in FIG. 3 is powered on or reset (step
S11), a reset signal is input to the processor cores P11, Q12,
R13, and S14. As aresult, an internal activation program runs
in the processor cores P11, Q12, R13, and S14. Described in
the activation program is the definition of an address space
accessible by the processor cores P11, Q12, R13, and S14 in
the apparatus. The activation program further includes the
description of the start address of the boot program. Such an
activation program is sometimes referred to as a startup rou-
tine.

The processor cores P11, Q12, R13, and S14 read the boot
program according to the procedure of the activation program
to read and activate a kernel core (step S12). The kernel core
is a basic portion of the operating system. By activating the
kernel core, the initial setting of the processor cores P11, Q12,
R13, and S14 is performed and the operating system runs in
the processor cores P11, Q12, R13, and S14. Various func-
tional services are not activated by only the kernel core.



US 9,218,201 B2

5

A kernel operating in the processor core P11 receives the
master authority (step S13). The kernel operating in the pro-
cessor core P11 transfers the master authority to another
processor core Q12, R13, or S14 through inter-processor-core
communication (step S14). The transfer may be to any pro-
cessor core. For example, the master authority may be trans-
ferred based on a processor core number. For example, the
destination processor core may be defined as a processor core
having a number one greater than the number of the source
processor core. For example, if the number of the source
processor core is the maximum value, the destination proces-
sor core may be defined as a processor core having the small-
est number. Even if the master authority is transferred, the
kernel operating in the processor core P11 has the master
authority until discarding the master authority.

After transferring the master authority, the kernel operating
in the processor core P11 collects the load information of the
processor cores P11, Q12, R13, and S14 (step S15). The load
information is information indicative of a usage status of
resources such as a memory resource used by the processor
cores P11, Q12, R13, and S14. The load information is stored
in memory such as the main memory 18, for example. The
kernel operating in the processor core P11 performs schedul-
ing based on the collected load information such that the load
of the processor cores P11, Q12, R13, and S14 is distributed
(step S16).

The kernel operating in the processor core P11 secures
resources based on resource information prepared in advance
and requests the processor core assigned with a initializing
thread to activate the initializing thread (step S17). The
resource information includes information related to a uti-
lized resource, a context area, a process (thread) ID, a process
(thread) name, and other competing processes (threads) as
information fixed each time the apparatus is activated or reset.
If the initializing thread has a reserved processing processor
core, the kernel operating in the processor core P11 makes a
request for activation to the reserved processor core without
performing the scheduling.

The kernel operating in the processor core P11 then dis-
cards the master authority (step S18) and enters the state of
waiting to receive the master authority again (step S19).
When receiving the master authority again (step S13), the
kernel operating in the processor core P11 repeats step S13 to
step S19.

FIG. 5 is a flowchart of the operation of a processor core
that does not receive the master authority first in the activating
method according to the second embodiment. The description
will be made of the operation of a kernel operating in the
processor core Q12 among the processor cores Q12,R13, and
S14 that do not receive the master authority first. Kernels
operating in the processor cores R13 and S14 operate in the
same way.

As depicted in FIG. 5, until the kernel core enters an acti-
vated state after the apparatus is powered on or reset, the
operation is as described for the processor core P11 with
reference to FIG. 4 (step S11, step S12). When the kernel core
is activated, the kernel operating in the processor core Q12
enters the state of waiting to receive the master authority from
the other processor cores P11, R13, and R14 (step S21). Upon
receiving the master authority while waiting (step S22), the
kernel operating in the processor core Q12 transfers the mas-
ter authority to another processor core P11, R13, or S14
through inter-processor-core communication (step S23). The
destination of the transfer may be determined in the order of
the processor core number as described with respect to step 14
in FIG. 4, for example. At this point, the kernel operating in
the processor core Q12 has the master authority.

10

15

20

25

30

35

40

45

50

55

60

65

6

The subsequent operation is as described for the kernel
operating in the processor core P11 with reference to FIG. 4.
For example, as described above, the kernel operating in the
processor core Q12 collects the load information (step S24),
performs the scheduling (step S25), and requests the activa-
tion of'the initializing thread (step S26). The kernel operating
in the processor core Q12 discards the master authority (step
S27) and returns to the state of waiting to receive the master
authority again (step S21) to return this operation.

When a kernel operating in a certain processor core trans-
fers the master authority to another processor core, multiple
processor cores may have the master authority at the same
time. For example, in the example depicted in FIGS. 4 and 5,
the kernel operating in the processor core P11 is assumed to
transfer the master authority to the processor core Q12. In this
case, the processor core P11 and the processor core Q12 hold
the master authority until each discards the master authority.

When a normal process is activated in the apparatus under
operation rather than at the time of activation of the apparatus
as in the second embedment, if multiple processor cores have
the master authority at the same time in this way, the follow-
ing failure may occur. For example, contention occurs if
multiple kernels having the master authority accidentally
attempt to secure memory resources etc., at the same time. On
the other hand, the second embodiment corresponds to the
operation at the time of activation of the apparatus. The
resources necessary for threads and processes activated at the
activation of the apparatus are reserved as resource informa-
tion in a function table etc., prepared as the activation infor-
mation of the operating system in advance. Therefore, no
failure occurs even if multiple processor cores secure
resources at the same time.

FIG. 6 is a diagram of state transition in a slave control state
in the activating method according to the second embodi-
ment. As depicted in FIG. 6, after the apparatus is powered on
or reset, when the kernel core is activated, the processor cores
P11, Q12, R13, and R14 are put into a state of receiving an
activation request for an initializing thread by the slave con-
troller 32 (step S31). Upon receiving the activation request for
an initializing thread from another processor core, the pro-
cessor cores P11, Q12, R13, and R14 activate the correspond-
ing thread (step S32). Here, the processor core activating the
requested initializing thread updates the load information to
indicate that resources such as a memory resource used for
activating the corresponding thread are in use. Upon comple-
tion of the initialization of devices by the requested initializ-
ing thread, the processor core returns to the state of receiving
the activation request for another initializing thread from
other processor cores.

As described above, the schedulers operating in the pro-
cessor cores P11, Q12, R13, and R14 make a request for the
activation of an initializing thread to a processor core having
a lower load based on the load information. Since multiple
schedulers may concurrently operate here, the load informa-
tion collected by the schedulers does not necessarily reflect
the current load statuses of the processor cores P11, Q12,
R13, and R14 correctly. Therefore, if the initializing threads
are assigned to the processor cores based on the load infor-
mation, the load of the processor cores P11, R13, and R14
may temporarily be biased. However, such a bias of the load
is averaged while a multiplicity of, for example, about 50 to
100, or 100 or more, initializing threads are sequentially
assigned to the processor cores P11, Q12, R13, and R14.
Therefore, this is not particularly problematic.

FIG. 7 is adiagram of the operation of the multicore system
in the activating method according to the second embodi-
ment. As depicted in FIG. 7, when the apparatus having the



US 9,218,201 B2

7

multicore system depicted in FIG. 3 is powered on or reset,
the activation program runs in the processor core P11, causing
the boot program to run (step S41). A boot instruction is given
from the processor core P11 to the other processor cores Q12,
R13, and S14 through inter-processor-core communication
(step S42). The processor cores P11, Q12, R13, and S14
activate kernel cores and perform initial setting (step S43).
Here, the processor core P11 is given the master authority.

The processor core P11 transfers the master authority to the
processor core Q12 through inter-processor-core communi-
cation (step S44). The processor core P11 performs the sched-
uling of an initializing thread a (indicated by “A” in FIG. 7)
(step S45) and discards the master authority.

The processor core Q12 receiving the master authority
transfers the master authority to the processor core R13
through inter-processor-core communication (step S46). The
processor core Q12 performs the scheduling of an initializing
thread b (indicated by “B” in FIG. 7) (step S47) and discards
the master authority.

The processor core R13 receiving the master authority
transfers the master authority to the processor core S14
through inter-processor-core communication (step S48). The
processor core R13 performs the scheduling of an initializing
thread ¢ (indicated by “C” in FIG. 7) (step S49) and discards
the master authority.

The processor core S14 receiving the master authority
transfers the master authority to the processor core P11
through inter-processor-core communication (step S50). The
processor core S14 performs the scheduling of an initializing
thread d (indicated by “D” in FIG. 7) (step S51) and discards
the master authority.

The processor core P11 receiving the master authority
transfers the master authority to the processor core Q12
through inter-processor-core communication (step S52). The
processor core P11 performs the scheduling of an initializing
thread e (indicated by “E” in FIG. 7) (step S53) and discards
the master authority. The same operation is subsequently
repeated until the scheduling of a last initializing thread n
(indicated by “N” in FIG. 7) is completed (step S54). The
processor core performing the scheduling of the last initial-
izing thread n is the processor core R13 in the depicted
example and returns the master authority to the processor core
P11 receiving the master authority first (step S55). As a result,
the control of circulating the master authority is canceled.

Each ofthe initializing thread is allocated by the schedulers
to an available processor core, i.e., a processor core not
executing a process. Although not particularly limited, in the
example depicted in FIG. 7, when the processor core P11
performs the scheduling A, the processor core Q12 and the
processor core R13 execute processes and the processor core
S14 executes no process. Therefore, the initializing thread “a”
is assigned to the processor core S14 and executed by the
processor core S14. Similarly, the initializing thread b is
assigned to the processor core P11, which is available during
the scheduling B, and executed by the processor core P11.
The same applies to the initializing threads c, d, e, and n.

As described, in the second embodiment, multiple sched-
ulers perform the scheduling of different initializing threads
in parallel. Multiple processor cores execute different initial-
izing threads in parallel. Equation (1) expresses a time T from
the time when the initial setting of the processor cores P11,
Q12, R13, and S14 is completed by the activation of the
kernel cores until the initialization of devices is completed by
F initializing threads. In this equation, G denotes the number
of processor cores; H [ms] denotes an average scheduling
time in a processor core; J [ns] denotes an average commu-
nication time between processor cores; and K [ms] denotes an

10

15

20

25

30

35

40

45

50

55

60

65

8

average initialization time of a device. A magnitude relation
among J, H, and K is normally J<<H<K. Max(Y,Z) means the
larger among Y and 7.

T=(F/G)xMax(2xJ+H,J+K) M

FIG. 8 depicts, for comparison, operation when the proces-
sor core P11 performs the scheduling of all the initializing
threads without transferring the master authority. As depicted
in FIG. 8, if the master authority is not transterred, the sched-
uling of different initializing threads is not performed in
parallel such that once the processor core P11 completes the
scheduling A of the initializing thread a, the scheduling B of
the initializing thread b is started. In this comparative
example, equation (2) expresses a time T' from the time when
the initial setting of the processor cores P11, Q12, R13, and
S14 is completed by the activation of the kernel cores until the
initialization of devices is completed by F initializing threads.

T=(F/G)x(H+J+K) ()]

The scheduling time includes the time consumed to search
for a processor core not executing a process, for example. The
initialization time includes the time consumed for generating
context and the time consumed for initializing the devices
(such as setting an initial value for a register), for example.
The communication between processor cores generally
requires about 10 cycles for each communicationat a %4 clock
of the operation clock of the processor cores.

As an example, the number F of initializing threads is
assumed to be 100, the number G of processor cores is
assumed to be 4, the average scheduling time H of processor
cores is assumed to be 1 ms, the average communication time
J between processor cores is assumed to be 20 ns, and the
average initialization time K of devices is assumed to be 3 ms.
The operation clock of processor cores is assumed to be 1
GHz. From equation (1) described above, the time T until the
initialization of devices is completed by the F initializing
threads is 75 ms in the second embodiment. On the other
hand, from equation (2) described above, the time T" until the
initialization of devices is completed by the F initializing
threads is 100 ms in the comparative example. Therefore,
according to the second embodiment, the activation time of
the apparatus can be improved by 25% as compared to the
comparative example. In an apparatus having a conventional
single-core system (the number G of processor cores=1),
when the operation clock of the processor core is 1 GHz, T is
about 400 ms from equation (2) described above. Therefore,
according to the second embodiment, the activation time of
the apparatus can be improved by 81% as compared to the
apparatus having the conventional single-core system.

According to the second embodiment, the same effect as
the first example can be obtained. In the second embodiment,
processes and threads are not preliminarily allocated to
respective schedulers. Therefore, if a user updates a system or
adds a new function, added processes and threads are suitably
assigned to the processor cores according to the current load
information. Therefore, the second embodiment is suitable
for embedded devices operated in a highly flexible manner
such that a new function is added through user’s operation as
in the case of mobile telephone terminals, for example. The
second embodiment is also applicable to an application acti-
vated in an initial state or an application already embedded in
the product shipment stage in products having a fixed use
such as embedded devices. In this case, a function table
equivalent to the function table prepared for activation infor-
mation of an operating system may be prepared for such an



US 9,218,201 B2

9

application. According to the second embodiment, the appa-
ratus can be activated rapidly including the activation of such
an application.

Although the first and second embodiments are described
by taking a multicore processor with multiple processor cores
built into one microprocessor as an example of a multicore
system, the present invention is applicable to a multiprocessor
equipped with multiple microprocessors in the same way. If
the present invention is applied to a multiprocessor, the pro-
cessor cores in the description correspond to processors.

All examples and conditional language provided herein are
intended for pedagogical purposes of aiding the reader in
understanding the invention and the concepts contributed by
the inventor to further the art, and are not to be construed as
limitations to such specifically recited examples and condi-
tions, nor does the organization of such examples in the
specification relate to a showing of the superiority and infe-
riority of the invention. Although one or more embodiments
of the present invention have been described in detail, it
should be understood that the various changes, substitutions,
and alterations could be made hereto without departing from
the spirit and scope of the invention.

What is claimed is:
1. A multicore system comprising:
a plurality of processor cores;
one or more processes;
a respective scheduler in each processor core of the plural-
ity of processor cores configured to assign a process of
the one or more processes to a processor core of the
plurality of processor cores when having a master
authority, the master authority being an authority to
assign processes;
a master controller performing control to repeat a cycle
until all processes of the one or more processes are
assigned, in which the respective scheduler in each pro-
cessor core of the plurality of processor cores, respec-
tively:
receives the master authority,
transfers the master authority to another scheduler in
another processor core, the master authority being
held by both the respective scheduler and the another
scheduler, until the master authority is discarded by
the respective scheduler, wherein the respective
scheduler and the another scheduler may hold the
master authority at the same time,

assigns a process of the one or more processes to the
each processor core of the plurality of processor
cores,

discards the master authority, and

enters a state of waiting to receive the master authority
from another scheduler.

2. The multicore system according to claim 1, wherein the
respective scheduler having the master authority assigns a
process of the one or more processes with a processor core
reserved to the reserved processor core.

3. The multicore system according to claim 1, wherein after
transferring the master authority, the respective scheduler
acquires load information of the plurality of processor cores
to assign the process to one of the plurality of processor cores
having a lower load.

4. The multicore system according to claim 1, wherein the
respective scheduler discards the master authority upon com-
pleting assignment of the process to a given one of the plu-
rality of processor cores.

15

20

25

30

40

45

50

10

5. The multicore system according to claim 1, wherein the
master controller returns the master authority to a predeter-
mined respective scheduler of the plurality of processor cores
when all processes of the one or more processes have been
assigned.

6. The multicore system according to claim 1, wherein the
process of the one or more processes is a process of initializ-
ing devices connected to the multicore system at activation of
the multicore system.

7. The multicore system according to claim 1, wherein the
process of the one or more processes is a program embedded
in advance and executed at activation of the multicore system.

8. An activating method executed by a multicore system
having a plurality of processor cores, and one or more pro-
cesses, the method comprising:

executing a cycle, wherein a respective scheduler in each

processor core of the plurality of processor cores,

assigns a process of the one or more processes to a

processor core of the plurality of processor cores when

having a master authority, the master authority being an

authority to assign processes, the cycle including:

receiving, by the respective scheduler in the each pro-
cessor core of the plurality of processor cores, the
master authority;

transferring the master authority to another scheduler in
another processor core, the master authority being
held by both the respective scheduler and the another
scheduler, until the master authority is discarded by
the respective scheduler, wherein the respective
scheduler and the another scheduler may hold the
master authority at the same time;

assigning a process of the one or more processes to the
each processor core of the plurality of processor
cores;

discarding the master authority; wherein

a master controller performs control to repeat the cycle
until all processes of the one or more processes are
assigned.

9. The activating method according to claim 8, wherein the
assigning includes assigning a process of the one or more
processes with a processor core reserved, to the reserved
processor core.

10. The activating method according to claim 8, the method
further comprising acquiring load information of the plurality
of'processor cores, after the transferring of the master author-
ity, wherein

the assigning includes assigning the process to one of the

plurality of processor cores having a lower load.

11. The activating method according to claim 8, wherein
the discarding includes discarding the master authority after
the assigning of the process.

12. The activating method according to claim 8, further
comprising returning the master authority to a predetermined
respective scheduler of the plurality of processor cores when
at the assigning, all processes of the one or more processes
have been assigned.

13. The activating method according to claim 8, wherein
the process of the one or more processes is a process of
initializing devices connected to the multicore system at acti-
vation of the multicore system.

14. The activating method according to claim 8, wherein
the process of the one or more processes is a program embed-
ded in advance to be executed at activation of the multicore
system.



